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Abstract—Pipe-Déjàvu automates pipeline-parallel training of
large deep learning models, emphasizing three main innovations:
(1) a predictive model that considers communication cost, model
computational cost, and hardware information to predict latency
and resources of each parallel configurations. It saves time on
pre-profiling before searching the parallel configuration; (2) a
differentiable parallel configuration search space inspired by
DARTS[39], can potentially reach optimal configuration faster
than the original dynamic programming; and (3) parallel random
initialization employed for faster training loss convergence. By
using hardware-aware scheduling based on latency and resources,
Pipe-Déjàvu prioritizes training larger layers on more accessible
and better computational devices, shortening the longest training
stage and reducing overall training time. Given the time estimation
on each stage, Pipe-Déjàvu optimizes the pairing between stage
and hardware to ease the longest overhead. With knowledge of
hardware capacity and network latency, Pipe-Déjàvu predicts
optimal scheduling, saving time and resources from pre-profiling.
With differentiable search space, it accelerates searching of parallel
configuration. With parallel random initialization, it improves
speed of loss convergence.

I. INTRODUCTION

Deep learning has made remarkable advancements in recent
years, thanks in part to the increasing computational power of
hardware and the development of more efficient algorithms.
Despite these advancements, training large-scale neural net-
works remains a time-consuming and resource-intensive task.
To address this challenge, we propose Pipe-Déjàvu, a method
that automates pipeline-parallel training of large deep learning
models, offering significant improvements in training efficiency
and resource utilization.

Pipe-Déjàvu emphasizes three main innovations: (1) a
predictive model that considers communication cost, model
computational cost, and hardware information to predict latency
and resources of each parallel configuration, saving time on
pre-profiling before searching the parallel configuration; (2) a
differentiable parallel configuration search space inspired by
DARTS, which can potentially reach optimal configurations
faster than the original dynamic programming; and (3) par-
allel random initialization employed for faster training loss
convergence.

By using hardware-aware scheduling based on latency and
resources, Pipe-Déjàvu prioritizes training larger layers on
more accessible and better computational devices, shortening
the longest training stage and reducing overall training time.
Given the time estimation on each stage, Pipe-Déjàvu optimizes
the pairing between stage and hardware to ease the longest

overhead. With knowledge of hardware capacity and network
latency, Pipe-Déjàvu predicts optimal scheduling, saving time
and resources from pre-profiling.

In addition to the aforementioned innovations, Pipe-Déjàvu
leverages a differentiable search space to accelerate the search-
ing of parallel configurations, further reducing the time required
for optimization. Moreover, the parallel random initialization
approach improves the speed of loss convergence, contributing
to the overall efficiency of the training process.

Our contributions in this paper include:
1) A predictive model that considers communication cost,

model computational cost, and hardware information to
predict latency and resources of each parallel configura-
tion, saving pre-profiling time.

2) A differentiable parallel configuration search space in-
spired by DARTS, which accelerates the searching of
optimal configurations.

3) Parallel random initialization for faster training loss
convergence.

4) Hardware-aware scheduling that prioritizes training larger
layers on more accessible and better computational
devices, reducing overall training time.

The rest of the paper is organized as follows: Section 2
presents a background on gradient descent, data parallelism,
model parallelism, and Bayesian optimization. Section 3 de-
scribes the proposed parallel random initialization approach in
detail, including its integration with the Bayesian optimization
framework. Section 4 discusses the algorithmic implementation
of the approach, and Section 5 presents experimental results
demonstrating its effectiveness, as well as a comparison to
other state-of-the-art methods. Finally, Section 6 concludes the
paper and discusses future research directions.

II. RELATED WORK

A. Data parallelism

1.1.1 Definition: Data parallelism splits the training data
among distributed workers, but copies the model to each worker.
Every worker calculates the parameter updates on its own data
slice and shares them with other workers before updating the
weights. This way, all workers have the same model parameters
during training.

1.1.2 Related works: Horovod [18] and PyTorchDDP [20] are
two popular data-parallel training systems that use all-reduce
to synchronize gradients. BytePS [7, 16] combines all-reduce



and parameter servers and leverages heterogeneous resources
in data center clusters. AutoDist [26] employs learning-based
methods to devise a data-parallel training strategy. ZeRO [17,
23] enhances the memory usage of data parallelism by reducing
duplicated tensors. MiCS [27] lowers the communication scale
on top of ZeRO for better scalability on the public cloud.

B. Model/Operator parallelism
1.2.1 Definition: When the model cannot fit in one device,

operator parallelism is a viable model parallelism option.
Operator parallelism splits the computation of a specific
operator, such as "matmul" shown in Appendix Fig. 2b, along
non-batch axes, and perform each part of the operator in parallel
across multiple devices. Because input tensors are jointly split,
when a device performs its op part, the needed portions of
input tensors may not be in its local memory. Communication
is thus needed to get the input data from other devices. When
the tensors are split evenly, i.e., SPMD [24], all devices will
follow the same collective communication patterns such as
all-reduce, all-gather, and all-to-all.

1.2.2 Related works: The main types of model parallelisms
have been discussed in definition. Mesh TensorFlow [19],
GSPMD [9,24] and OneFlow [25] provide annotation APIs for
users to manually specify the intra-op parallel plan. ColocRL
[12] places separate model parts on different devices without
pipelining, so the concurrency only happens when there are
parallel branches in the model.

C. Pipeline parallelism
1.3.1 Definition: Pipeline parallelism puts different sets of

ops from the model graph, called stages, on different workers;
at the same time, it divides the training batch into several
microbatches, and pipelines the forward and backward passes
across microbatches on distributed workers, as Appendix Fig.
2d illustrates. Unlike operator parallelism, pipeline parallelism
sends intermediate activations at the forward and backward
passes between different workers using point-to-point commu-
nication.

1.3.2 Related works: Gpipe [5] divides the input data into
micro-batches and forms pipeline parallelisms. PipeDream
[13, 14] improves GPipe by using asynchronous training
algorithms, reducing memory usage, and integrating it with
data parallelism. However, PipeDream is asynchronous while
Alpa[28] is a synchronous training system. TeraPipe [11]
finds a new pipeline parallelism dimension for transformer-
based LMs. Google’s Pathway system [2] is a concurrent work
of Alpa[28]. Pathway advocates a single controller runtime
architecture combining "single program multiple data" (SPMD)
and "multiple program multiple data" (MPMD) model. This
is similar to Alpa’s[28] runtime part, where SPMD is used
for intra-op parallelisms and MPMD is used for inter-op
parallelism.

D. Manual combination of parallelisms
1.4.1 Definition and related works: The latest developments

indicate that the methods discussed above have to be combined

to scale up current large DL models [15, 24]. The state-of-the-
art training systems, such as Megatron-LM [15, 20], manually
create a specific execution plan that merges these parallelisms
for transformer language models, which is also called 3D
Parallelism. It assumes that the model has the same transformer
layer repeated and assigns the same number of layers to each
pipeline stage and applies a hand-crafted operator and data
parallelism setup uniformly for all layers. It’s not generalizable
to all models.

E. Automatic combination of parallelisms

1.5.1 Definition: The individual parallelism settings, how they
depend on each other and on model and cluster setups, create
a complex space that makes it hard to automatically combine
these parallelisms. For example, when operator parallelism is
used with data parallelism, adding a dataparallel replica means
allocating a new set of devices (not just one device) as the
worker and finding out the best operator parallelism settings
within those devices. When pipeline parallelism is included, the
optimal pipelining scheme depends on the data and operator
parallelism choices of each pipeline stage and how devices are
allocated for each stage. With this view, previous explorations
[4, 6, 22, 26] of auto-parallelization are limited to combining
data parallelism with at most one model parallelism approach,
which misses significant performance opportunities.

1.5.2 Related works: Some research works on how to
automatically find the best way to train models in parallel.
Tofu [22] uses a dynamic programming method to find the
best way to split an operation within a node for linear graphs.
FlexFlow [6] defines a "SOAP" problem and uses an MCMC-
based random search method. But it only works for placing
devices and not for pipeline parallelism. It also cannot handle
large graphs or clusters well and does not guarantee optimal.
TensorOpt [3] uses a dynamic programming method to find the
best way to split an operation that considers both memory
and computation cost. Varuna [1] works for clusters with
low bandwidth and focuses on finding the best way to use
pipeline and data parallelism together. Piper [21] also finds
a parallel way that uses both inter- and intra-op parallelism,
but it depends on manually designed ways to split operations
and assumes a uniform network topology and asynchronous
pipeline schedules.

III. MOTIVATION AND CONCRETE PROBLEM STATEMENT

Parallel training has become essential for training today’s
large models. Parallel training involves distributing the model
training process across multiple processing units, such as
GPUs or TPUs, which work together to process the data
simultaneously. This results in faster convergence and reduces
the overall training time. There are many well-studied parallel
mechanisms as we describe in above related work, in which
pipeline parallel plays an important role in. But pipeline parallel
has some inherent shortcomings in fully utilizing all computing
units due to sequential dependency of different stages. We can
provide a simple example in Fig 2. Assume we divide our



training graph into N stage, stage i generally took ti to finish,
the overall onepass latency for the B batches pipeline is

T =

N∑
i=1

ti + (B − 1) · max
1≤j≤N

{tj}

From the above equation we can know that in order to shorten

Fig. 1. Example for pipeline parallelism timeline with multiple stages

the overall execution time, our concrete problem is improving
the performance (reduce execution time max {ti} ) of the
longest stage. Instinctively, those longest execution stages are
more computational intensive regarding physical or hardware
resources like GPU throughput/FLOPS, GPU memory, network
latency and even CPU and NVMe capability depending on the
user-defined optimization strategy. For example, the sharding
strategy introduced by ZeRO incurs heavy communication
costs between nodes which emphasize the importance of large
network bandwidth. Thus, if we can have some predictor
algorithm built in the scheduler, that using information like
layer implementation (parameters size / structure) within each
stage, hardware conditions of each processing units and user
optimization strategy, to map the relatively computational
intensive stages to those relatively more "powerful" machine,
then we can shorten the execution time of the longest stage
compared to random scheduler.

IV. METHODS

A. Hard-ware Latency Predict Model for Saving Pre-profiling
Time

Fit a function which inputs the (1.Communication cost 2.
Model Computation Cost 3. Hardware information), outputs
the (1. Estimated execution time 2. Estimated GPU resources
to consume), so that we can plan pipeline parallelism without
or with less profiling which takes certain part of automatic
parallel configuration time.

f(communication,model, hardware) = (time, resources)

To be more specific, intuitively here is a naive example of
how we can model this predicted execution latency for specific

ML task mathematically:

pred_time(communication,model, hardware) =

α× g(#matrix_multiplication_operations)
h(hardware_computational_speed)

+

β × p(network_bandwidth)
q(data_to_transmit)

+ C

(1)
For the model above, we can learn the unknown parameters

or function using some linear or nonlinear regression methods.

B. Differentiable Search Space for Faster Parallel Configu-
ration Search

1) Dynamic Programming: Many existing automatic
pipeline parellel use dynamic programming to minimize the
training latency given the time estimated for each stage.

T ∗ = min
s1,...,SS ;

(n1,m1),...,(nS ,mS)

{
S∑

i=1

ti + (B − 1) · max
1≤j≤S

{tj}

}
(2)

Alpa’s[28] DP algorithm computes the slicing
in O

(
K3NM(N + log(M))

)
time for a fixed

tmax.tmax has at most O
(
K2(N + log(M))

)
choices:

tintra ((oi, . . . , oj) ,Mesh (ns,ms)) for i, j = 1, . . . ,K and
all the submesh choices. The complexity of this DP algorithm
is thus O

(
K5NM(N + log(M))2

)
. This complexity is not

feasible for a large computational graph of more than ten
thousand operators. Therefore, we rethink the search space
and make it differentiable to optimize it.

2) Parallel Computational Graph Representation: To
represent the parallel search space as a computational graph,
we can model it using a directed acyclic graph (DAG) where
each vertex represents a stage of computation and the edges
denote the flow of data or model parameters between the
stages. The nodes in this graph can be partitioned into different
parallelization strategies, such as data parallelism, model
parallelism, and pipeline parallelism.

For example, let’s consider a simple graph G(V,E), where
V is the set of vertices, and E is the set of edges. We can
represent a parallel search space for a two-layer neural network
as follows:

Fig. 2. comparing Computation graph and Parallel Computation graph



Both graphs in the figure above describe the same paralleliza-
tion of two consecutive matrix multiplications (A×B)× C
(a simplified form of attention). The green and orange boxes
denote regular DNN operators and parallelization operators
respectively.

• Data Parallelism (DP): In this strategy, each layer of the
neural network is replicated across all available devices.
The input data is then divided into equal partitions and
processed concurrently. The parallel search space for Data
Parallelism can be depicted as two distinct sets of nodes,
where each set contains nodes corresponding to each
device.

• Model Parallelism (MP): In Model Parallelism, each
layer of the network is assigned to a different device,
distributing the model’s layers across multiple devices.
This strategy is particularly useful when dealing with
large models that exceed the memory capacity of a single
device. The parallel search space for this approach can
be represented as a single set of nodes, where each node
corresponds to a specific layer-device assignment.

• Pipeline Parallelism (PP): Pipeline Parallelism, on the
other hand, focuses on improving the computational
efficiency of model training by exploiting the pipelined
execution of layers across different devices. While it also
assigns each layer to a different device, similar to Model
Parallelism, the key difference lies in the data processing
approach. In Pipeline Parallelism, input data is processed
in a pipelined manner across the devices, allowing for
concurrent execution of different layers, which reduces
the overall training time. The parallel search space for
Pipeline Parallelism can be depicted as a sequence of
stages, where each stage contains a node representing the
layer-device assignment and its position in the pipeline.

To represent both parallelization strategies in the same graph,
we can create a graph-like structure with multiple layers and
vertices. We can then use the softmax function to assign
probabilities to the edges between nodes and layers, which
represent the likelihood of selecting a specific parallelization
strategy. This continuous representation enables us to differen-
tiate the parallelization search space and optimize the parallel
configuration along with the model parameters.

3) Differentiable Parallelization Search Space: To use
a computational graph representation for the differentiable
parallelization search space, let’s first define a graph G(V,E),
where V is the set of vertices and E is the set of edges. In
this graph, each vertex represents a computation stage, and the
edges denote the flow of data or model parameters between
the stages.

For each vertex vi in V , we associate a set of N paralleliza-
tion strategies, represented as αi1, αi2, ..., αiN . We can then
represent the search space as a matrix A of size |V |×N , where
Aij denotes the discrete choice for strategy j at stage i. We
can transform this search space into a differentiable problem

Fig. 3. Softmax Intuition: relaxing the discrete set of candidate
operations

by applying the softmax function to each row of A:

softmax(A)ij =
exp (Aij)∑N
k=1 exp (Aik)

(3)

Here, the continuous approximation of the discrete choice is
given by softmax(A)ij for each strategy j at stage i.

Now, we can use this continuous representation of the search
space in the context of a computational graph to describe the
algebra transformations and parallel strategies. Each vertex vi
in the graph can be associated with a continuous approximation
of its parallelization strategy, given by the row softmax(A)i.
These continuous approximations can then be used to compute
the forward and backward passes in the computational graph
while considering the different parallel strategies.

The rest of the optimization process, including gradient
computation and end-to-end optimization, remains the same as
in the previous response, with the parallel configuration matrix
A being updated during the optimization.

This approach allows us to incorporate a graph representation
of the parallelization search space into the differentiable
optimization process, enabling the joint optimization of model
training and parallelization strategies.

4) Bilevel Optimization: In the DARTS[39] paper, the
authors propose a bilevel optimization problem where they
optimize the model’s architecture and its weights simultane-
ously. To adapt this approach for parallelization strategies, we’ll
introduce a loss function that jointly evaluates the parallel
strategy and the training loss.

Let’s denote the model’s weights by θ and the parallelization
strategy represented as a matrix A. We’ll define the loss
function as L(θ,A), which is a combination of the training
loss and the evaluation of the parallel strategy. We can write
the joint optimization problem as:

minimize L(θ,A), with respect to θ,A (4)



Fig. 4. An overview of Differentiable Search Space: (a) Operations on the
edges are initially unknown. (b) Continuous relaxation of the search space by
placing a mixture of candidate operations on each edge. (c) Joint optimization
of the mixing probabilities and the network weights by solving a bilevel
optimization problem. (d) Inducing the final architecture from the learned
mixing probabilities.

This bilevel optimization problem can be approximated us-
ing gradient-based optimization. The gradients required for
updating θ and A are as follows:

∇θL(θ,A) =
dL(θ,A)

dθ

∇AL(θ,A) =
dL(θ,A)

dA

(5)

Here, ∇θL(θ,A) is the gradient with respect to the model
parameters θ, while ∇AL(θ,A) is the gradient with respect to
the parallelization strategy matrix A.

To perform end-to-end optimization, we’ll update both the
model parameters and the parallelization strategy using gradient
descent:

θ = θ − ηθ∇θL(θ,A)

A = A− ηA∇AL(θ,A)
(6)

where ηθ and ηA are the learning rates for the model parameters
and the parallelization strategy matrix A, respectively.

This approach allows us to jointly optimize the model
training and the parallelization strategies using a gradient-based
optimization method similar to the one used in the DARTS[39]
paper. Note that in practice, the loss function L(θ,A) should be
designed to effectively balance the trade-offs between training
loss and the evaluation of the parallel strategy.

5) Complexity Analysis: Analyzing the complexity of the
differentiable search space inspired by DARTS[39] requires
considering the computational costs involved in the forward
and backward passes, as well as the optimization process.

Let’s break down the complexity analysis:
• Forward pass complexity: The forward pass involves

computing the softmax for each vertex in the graph.
Since there are |V | vertices, each with N parallelization
strategies, the complexity of the forward pass is O(|V |N).

• Backward pass complexity: The gradient computation
involves computing the gradients for both the model
parameters (θ) and the parallelization strategy matrix (A).
Since there are |V | vertices, each with N parallelization
strategies, the complexity of computing the gradients with

respect to A is O(|V |N). The complexity of computing
the gradients with respect to the model parameters θ
depends on the specific model and its architecture, but
let’s denote it by O(Cθ).

• Optimization complexity: Updating both the model pa-
rameters and the parallelization strategy matrix involves
applying gradient descent, which has a complexity of
O(|V |N) for the parallelization strategy matrix A and
O(Cθ) for the model parameters θ.

In total, the complexity of the differentiable search space
inspired by DARTS[39] is:

O(|V |N)+O (Cθ)+O(|V |N)+O (Cθ) = O (2|V |N + 2Cθ)

However, this complexity analysis doesn’t account for the num-
ber of iterations required for convergence. If the optimization
process takes I iterations, the overall complexity becomes:

O (I (2|V |N + 2Cθ))

This complexity analysis shows that the differentiable search
space has a linear dependence on the number of vertices, the
number of parallelization strategies, and the complexity of
the model. It also highlights the importance of the number of
optimization iterations for determining the overall complexity
of the approach.

C. Parallel Random Initialization for Faster Loss Conver-
gence

In addition to the commonly known methods such as data
parallelism and model parallelism, we propose a novel approach
to accelerate the convergence of the training loss during
the optimization of neural networks. This approach involves
utilizing parallel random initialization, which refers to the
initial randomization of the network parameters.

One way to conceptualize gradient descent is to imagine a
rugged hill in search of the minimum value, with gradient
descent acting as a ball rolling down the steepest path.
Mathematically, the goal of optimization is to minimize the
objective function L(θ), where θ represents the parameters of
the neural network. The update rule for gradient descent is
given by:

θt+1 = θt − ηt∇θL (θt) (7)

where ηt is the learning rate at time t and ∇θL(θt) is the
gradient of the objective function with respect to the parameters
at time t. In data parallelism, n workers are assigned to look
at n small directions from a randomly initialized starting point.
The gradients are then combined and used for gradient descent.

However, during the initial randomization phase, there may
be points where the loss is very low, and gradient descent
at those points may quickly reach the minimum. Currently,
standard neural network training involves randomization only
once at the beginning, rather than sampling multiple times.

In the proposed parallel random initialization approach, we
can sample multiple randomization points in parallel at the
start of the training process. These points can be filtered based
on their respective loss values and gradient magnitudes. Only



Fig. 5. Parallel Random Initialization and Parallel Optimization Intuition

the ones with small loss and large gradients are retained for
further processing.

Subsequently, we can continue to sample within a smaller
scope, and further refine the set of points with small loss
values. This process can be repeated until a certain level of
convergence is achieved, at which point we can focus on the
gradient descent of a few selected points.

To implement this approach, we can start with a rough
grid with a large interval, and then identify the point with
the smallest loss within that grid. We can then perform finer-
grained sampling in the vicinity of that point to refine the set
of initialization points.

The proposed parallel random initialization approach offers
a promising alternative to the standard method of initializing
network parameters. By introducing randomness and paral-
lelization during the initialization phase, we can accelerate the
convergence of the training loss and potentially reduce the
overall training time of neural networks.

D. Model/Pipeline Parallel Fault Tolerance Analysis
Zeno provide a fault-tolerance algorithm from the perspective

of SGD for parameter server structure, which is mainly for
data parallel. The anaylsis is mainly on the gradient they send.
While after literature review, we find that there are very few
research about fault tolerance in model parallel and pipeline
parallel. Let wi be the weight assigned to the ith machine,
where

∑N
i=1 wi = 1. The overall gradient is computed as a

weighted sum of the local gradients from each machine, where
the weights are the weights assigned to each machine:

g =

N∑
i=1

wigi

To compute the weight assigned to each machine, we use a
suspicion-based approach similar to the one proposed in Zeno.

Algorithm 1 Bayesian Optimization for Parallel Random
Initialization

1: procedure BAYESIANOPTIMIZATION
2: function LOSSFUNCTION(params)
3: initV al← RESHAPEPARAMS(params,NN())
4: return PARALLELLOSS(NN(), initV al,
5: trainLoader, device, epoch, w_id)
6: end function
7: bounds← [(−1, 1)] ∗ SUMOFNUMEL(NN())
8: result← GPMINIMIZE(LossFunction,
9: x0, bounds, numWorkers, randomState)

10: bestParams← result.x
11: return RESHAPEPARAMS(bestParams,NN())
12: end procedure
13: function RESHAPEPARAMS(params,model)
14: return {param.reshape(p.shape) | param, p ∈

zip(params,model.parameters())}
15: end function
16: function SUMOFNUMEL(model)
17: return

∑
p∈model.parameters() p.numel()

18: end function

Specifically, we compute the suspicion level of each machine
i based on the deviation between its local gradient gi and the
overall gradient g :

si = ∥gi − g∥

The suspicion level si represents the degree of deviation
between the local gradient gi and the overall gradient g.
Machines with high suspicion levels are likely to be faulty and
should be given lower weights during the gradient combination
process.

We then update the weight assigned to each machine using
the following equation:

wi =
α

α+ si

where α is a hyperparameter that controls the weight given to
the suspicion level. Higher values of α give greater weight to the
suspicion level and vice versa. To identify the k machines with
the least influence on the overall gradient, we sort the machines
based on their weight in ascending order and select the first
k machines. We then replace the gradients of the identified
machines with the average of the remaining gradients:

ĝi =

∑N−k
j=1 gj

N − k

The proposed fault-tolerance algorithm for model paral-
lel/pipeline parallel with alpha-like strategy is designed to
mitigate the impact of faulty machines on the overall gradient
computation. By identifying and replacing the gradients of the
k machines with the least influence on the overall gradient, our
approach improves the fault tolerance of model parallel/pipeline
parallel and can be used to improve the robustness and
reliability of distributed machine learning systems.



V. EXPERIMENT RESULTS

A. Hard-ware Latency Predict model for Saving Pre-profiling
Time

We use one-shot mathematical formula to replace the pre-
profiling of alpa[28], having a reduce of profiling time. In the
Table below, we demonstrate the pre-profiling time is significant
for large model, while our one-shot prediction only took a few
minutes.

Models Time
GPT-39B > 24hr

Stable Diffusion > 12hr
GPT2 > 10hr
ViT > 6hr

Table: Pre-profiling time for different models
The advantage is that it saves profiling time which can be
long, up to 30% percent of whole compilation time. The
disadvantage is that it can be not so accurate.

Fig. 6. all gather operation cost measured vs prediction

In figure 6 we have demonstrated the cost for all gather oper-
ation. The measured mapping cost under different configuration
are represented in dot and our prediction algorithm were drew
in solid lines. As number of parameters increase in logarithm,
we observed a better fitting line across all configurations.
With coefficient of determination reaching 1.0, we proved
our regression are capable to predict the cost of placement
given appropriate operation and configuration.

B. Differentiable Search Space for Faster Parallel Configu-
ration Search

Fig. 7. Differentiable Search results vs Dynamic Programming on Knapsack
problem n = 1000,weight_range = (1, 1000),value_range = (1, 100),capacity
= 100000. Higher y axis is better.

Fig. 8. DP VS Differentiable Search on Knapsack problem n =
1000,weight_range = (1, 1000),value_range = (1, 100),capacity = 100000.
Notice that for Differentiable search, this picture plots the current searched
solution for specific Time stamp, the accumulated curve is the above one. The
DP curve in this plot is still accumulative so far best solution. We can notice
the spike of Differentiable Search Algorithm, displaying the pattern of how it
searches the optimal.

We first implemented the differentiable search space onto
the classic Knapsack problem. We compete it with the classical
dynamic programming algorithm. We found that if the search
space is quite small, dynamic programming works faster
than differentiable method. However, when the search space
becomes extremely larger, as the picture shows (when n =
1000,weight range = (1, 1000),value range = (1, 100),capacity
= 100000. Higher y axis is better.) , the differentiable dynamic
programming finds the suboptimal solution faster than the
dynamic programming. It takes only half of the time of dynamic
programming to reach the same suboptimal solution. However,
due to the gradient descent is not guaranteed to get the global



optimal solution, it seems that our differentiable search stop
on suboptimal and it’s hard for it to reach global optimal
afterwards. It’s an interesting phenomenum. It gives us insight
that differentiable may be faster at finding suboptimal when
the search space is extremely large.

We may later develop a hybrid algorithm, so that it will
reach suboptimal fast, then switch to dynamic programming
to find the global optimal.

Now we will discuss the dynamic programming of finding
parallel placement of distributed ML training. The complexity
of Alpa’s[28] DP algorithm is O

(
K5NM(N + log(M))2

)
.

This complexity is not feasible for a large computational graph
of more than ten thousand operators.

Therefore, we rethink the search space and use differentiable
search space inspired by DARTS[39].

We use differentiable search space instead of dynamic
programming, to search optimal parallel configuration faster.
We make the complexity become O (I (2|V |N + 2Cθ))
I: The number of iterations required for the optimization
process to converge.
|V |: The number of vertices in the graph representation of the
differentiable parallelization search space.
N : The number of parallelization strategies associated with
each vertex in the graph.
Cθ: The complexity of computing the gradients with respect
to the model parameters θ.
For demonstration purpose, our experiment uses partial code
from Alpa’s[28] dynamic programming space, to prove that
our differentiable search space could potientially outperform
the DP method.

Fig. 9. Differentiable Search results vs Dynamic Programming

The advantage is that it will not like DP, have to cut the
search space to make time complexity smaller. It may reach
better global optimal. The disadvantage is that the gradient de-
scent may cost more computational power. Its implementation is
more complex, can be buggy when implementing the algorithm.
Still, whether we will outperform dynamic programming is
not clear. We will fully implement the algorithm to see the
results in the future. Since the Alpa search space could be
large when the number of node and the their computational

power is heterogeneous, there could be some cases when the
differentiable search method could outperform the dynamic
programming method in finding the sub-optimal solution. We
will experiment it on more large cluster to see the results.

C. Parallel Random Initialization for Faster Loss Conver-
gence

We use parallel random initialization to select inherently
better initialization to make training loss converge faster. We
compare different sampling methods like Single Random Initial-
ization(original),Uniform Sampling. We partially implemented
Latin hypercube sampling,Bayesian Optimization,Adaptive
Sampling, and will test the results of them in the future.

Fig. 10. Parallel Random Initialization Results 4 workers

From the figure and experimental results, when 40work-
ers, the convergence speed can get around 1.5% improve.
That’s a small improve but it shows it may work if we
improve our initialization or sampling method. In the future
we will test different init method like kaiming_normal or
xavier_normal, and different sampling methods like Latin
hypercube sampling,Bayesian Optimization,Adaptive Sampling.
The advantage is that if all methods is used up, this method



can drain the resource to gain faster loss convergence. The
disadvantage is that it will cost many resources.

Fig. 12. Parallel Random Initialization Results 40 workers

Fig. 13. Parallel Random Initialization Results 40 workers



VI. TIMELINE/EXPECTED MILESTONES FOR ACHIEVING
OUR GOALS

4.1 Mar 15th: Get some initial experiment results that prove
our motivations(detect the idle bubble in pipeline flow).

4.2 Mar,30th: Figured out the concrete approaches for
predictor & finish most part of mid-term report.

4.3 Apr,15th: Implemented a simple heuristic binding
scheduler (maybe only taken several simple factors like
network) based on existing codebase like ColossalAI, Alpa[28].
Experiment Differentiable Search on small part of parallel
configuration. Experiment Parallel Random Initialization.

4.4 Apr,30th: Implemented the fully functional hard-ware
aware binding algorithm between pipeline stages and com-
putation meshes. Experiment Differentiable Search on larger
part of parallel configuration. Experiment Parallel Random
Initialization on different init strategy and random sampling
algorithm.

4.5 May,6th: Perform more training to evaluate our system
and finish final report
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APPENDIX B
CODE

The source code of this project is at https://github.com/
explcre/pipeDejavu

APPENDIX C
DISTRIBUTED TRAINING FAULT TOLERANCE

ALGORITHM

Algorithm 2 Distributed Training Fault Tolerance Algorithm
1: Initialize the weights of each machine wi =

1
N

2: while not converged do
3: Compute local gradients gi on each machine
4: Compute overall gradient g =

∑N
i=1 wigi

5: Compute suspicion level of each machine si = |gi−g|
6: Update the weight of each machine wi =

α
α+si

7: Sort machines based on their weight in ascending order
8: Identify the k machines with the least influence on the

overall gradient
9: Replace gradients of identified machines with the

average of remaining gradients ĝi =
∑

j=1N−kgj
N−k

10: Compute overall gradient g =
∑N

i=1 wiĝi
11: Update model parameters using the overall gradient
12: end while

https://www.deepspeed.ai/tutorials/pipeline/
https://huggingface.co/docs/transformers/v4.15.0/parallelism
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APPENDIX D
IMAGES OF DIFERENT PARALLEL PARADIGM

Fig. 14. Existing Parallelization Techniques

Fig. 15. (a) Data Parallelism

Fig. 16. (b) Operator Parallelism

Fig. 17. (c) ZeRO Optimizer

Fig. 18. (d) Pipeline Parallelism

Figure 2: Common parallelization techniques for training a
2-layer Multi-layer Perceptron (MLP). Only the forward pass
is shown. " x " is the input data. "w1" and "w2" are two weight
matrices.

APPENDIX E
LOGIC FLOW OF HOW TO PARALLELIZE A

COMPUTATIONAL GRAPH

Fig. 18. Step 1: Computation Graph when node number n = 4



Fig. 19. Step 2: Cut n-1 of this computation graph

Fig. 20. Step 3: Add communication cost

Fig. 21. Step 4: Apply hardware cost function

Fig. 22. Step 5: Abstract to n nodes



Fig. 23. Step 6: Apply MAX operator to each layer of the tree

APPENDIX F
CODE EXAMPLE IN FITTING PROFILING DATABASE PICKLE

FILE USING LINEAR REGRESSION

Listing 1. Code Example in fitting profiling database pickle file using linear
regression

1 import pickle
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from sklearn.linear_model import

LinearRegression
5 from sklearn.metrics import r2_score
6 from decimal import Decimal
7 from sklearn.preprocessing import

StandardScaler
8 # Load the provided data
9 with open("prof_database.pkl", "rb") as f:

10 data = pickle.load(f)
11

12 # Function to extract X and Y values from
the dataset

13 def extract_data(dataset, key):
14 x = [point[0] for point in dataset[key

]]
15 #x = [Decimal(point[0]) for point in

dataset[key]]
16 y = [point[1] for point in dataset[key

]]
17 #y = [Decimal(point[1]) for point in

dataset[key]]
18

19 # Replace extreme values with the
maximum finite representable value
for float64

20 x = np.clip(x, np.finfo(np.float64).min
, np.finfo(np.float64).max)

21 y = np.clip(y, np.finfo(np.float64).min
, np.finfo(np.float64).max)

22

23 # Replace NaN values with the mean of
the non-NaN elements in the array

24 y = np.where(np.isnan(y), np.nanmean(y)
, y)

25

26 return np.array(x).reshape(-1, 1), np.
array(y)

27

28 # Function to filter out infinity or large
values from X and y

29 def filter_data(X, y):
30 X_flat = np.ravel(X)
31 overflow_mask = (X_flat < np.finfo(np.

float32).max) & (y < np.finfo(np.
float32).max)

32 return X[overflow_mask], y[
overflow_mask]

33

34 # Function to apply log transformation to y
values

35 def apply_log_transform(y):
36 return np.log(y)
37

38 # List of attributes
39 attributes = [
40 ’all_gather_cost_dict’,
41 ’all_reduce_cost_dict’,
42 ’all_to_all_cost_dict’,



43 ’reduce_scatter_cost_dict’,
44 ’available_memory_per_device’,
45 ’dot_cost_dict’,
46 ’conv_cost_dict’,
47 ’op_cost_dict’,
48 ]
49

50 # Loop through all keys
51 for key in data.keys():
52 # Loop through all attributes
53 for attr in attributes:
54 attribute_dict = getattr(data[key],

attr)
55

56 if not isinstance(attribute_dict,
dict):

57 continue
58

59 for config, cost_data in
attribute_dict.items():

60 X, y = extract_data(
attribute_dict, config)

61

62 # Filter out infinity or large
values from X and y

63 X, y = filter_data(X, y)
64 # Apply log transformation to

y values
65 y = np.where(np.isnan(y), np.

nanmean(y), y)
66 # Initialize the scaler
67 scaler = StandardScaler()
68 if X.size == 0 or y.size == 0:
69 print(f"Empty arrays

encountered for {key},
{attr}, {config}.
Skipping...")

70 continue
71

72 y_norm = scaler.fit_transform(y
.reshape(-1, 1)).reshape
(-1)

73 # Linear Regression
74 lr = LinearRegression()
75 lr.fit(X, y_norm)
76 y_pred_norm = lr.predict(X)
77

78 # Rescale predictions back to
original scale

79 y_pred = scaler.
inverse_transform(
y_pred_norm.reshape(-1, 1))
.reshape(-1)

80 r2 = r2_score(y, y_pred)
81 ’’’
82 # Linear Regression
83 lr = LinearRegression()
84 lr.fit(X, y)
85 y_pred = lr.predict(X)
86 r2 = r2_score(y, y_pred)
87 ’’’
88 # Print accuracy results
89 print(f"Key: {key}")
90 print(f"Attribute: {attr}")
91 print(f"Configuration: {config}

")
92 print(f"R2 score: {r2:.2f}")

93 print(f"Slope: {lr.coef_[0]}")
94 print(f"Intercept: {lr.

intercept_}\n")
95

96 # Visualization
97 plt.scatter(X, y, label=f"{

config} R2: {r2:.2f}")
98 plt.plot(X, y_pred)
99

100 plt.xscale("log")
101 plt.yscale("log")
102 plt.xlabel("Number of Parameters")
103 plt.ylabel("Cost")
104

105 # Move the legend outside of the
plot

106 plt.legend(bbox_to_anchor=(1.05, 1)
, loc=’upper left’,
borderaxespad=0.)

107

108 plt.title(f"{attr.capitalize()} vs
Ranks for Different
Configurations ({key})")

109

110 # Save the plot
111 plt.savefig(f"{attr}_vs_ranks_{key

}.png", bbox_inches=’tight’)
112

113 # Show the plot
114 plt.show()
115

116 # Clear the plot for the next
attribute

117 plt.clf()



APPENDIX G
PREDICTIVE MODEL RESULTS FOR PRE-PROFILING STAGE
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APPENDIX H
EXAMPLE CODE FOR DP AND DIFFERENTIABLE SEARCH

SPACE FOR CLASSIC KNAPSACK PROBLEM

Listing 2. Dynamic Programming Knapsack Algorithm
1 def knapsack(items, capacity, print_every

=500, timer_every=10):
2 n = len(items)
3 dp = [[0 for _ in range(capacity + 1)]

for _ in range(n + 1)]
4

5 best_solutions_dp = []
6

7 start_time = time.time()
8 for i in range(1, n + 1):
9 weight, value = items[i - 1]

10 for w in range(capacity + 1):
11 if weight <= w:
12 dp[i][w] = max(dp[i - 1][w

], dp[i - 1][w - weight
] + value)

13 else:
14 dp[i][w] = dp[i - 1][w]
15

16 if i % timer_every == 0:
17 elapsed_time = time.time() -

start_time
18 best_solutions_dp.append((

elapsed_time, dp[i][-1]))
19 if i % print_every == 0:
20 print(f"Iteration {i}: Best

solution so far for DP:
value={dp[i][-1]},
elapsed_time={elapsed_time
:.2f}s")

21

22 selected_items = []
23 i, w = n, capacity
24 while i > 0 and w > 0:
25 weight, value = items[i - 1]
26 if dp[i][w] != dp[i - 1][w]:
27 selected_items.append(i - 1)
28 w -= weight
29 i -= 1
30

31 return dp[n][capacity], selected_items,
best_solutions_dp



Listing 3. Differentiable Dynamic Programming Knapsack Algorithm
1 from collections import namedtuple
2

3 Solution = namedtuple("Solution", ["value",
"items", "selection", "elapsed_time"])

4

5 def soft_knapsack(items, capacity, n_best
=10000, iterations=10000, learning_rate
=100, temperature=0.5, print_every=500,
penalty_factor=1e7):

6 n_best=iterations
7 n = len(items)
8 weights, values = zip(*items)
9 weights = torch.tensor(weights, dtype=

torch.float)
10 values = torch.tensor(values, dtype=

torch.float)
11

12 item_selection = torch.rand(n,
requires_grad=True)

13 optimizer = optim.RMSprop([
item_selection], lr=learning_rate)

14

15 best_solutions = []
16

17 start_time = time.time()
18 for i in range(iterations):
19 optimizer.zero_grad()
20 soft_selection = torch.sigmoid(

item_selection / temperature)
21 total_weight = torch.sum(

soft_selection * weights)
22 total_value = torch.sum(

soft_selection * values)
23 capacity_penalty = torch.clamp(

total_weight - capacity, min=0)
** 2

24

25 # Multiply capacity_penalty by a
large constant

26 loss = -(total_value -
penalty_factor *
capacity_penalty)

27 loss.backward()
28 optimizer.step()
29

30 # Clamp item_selection values
between -5 and 5

31 item_selection.data.clamp_(-5, 5)
32 if total_weight <= capacity:
33 # Update best solutions
34 final_selection = torch.sigmoid(

item_selection / temperature)
> 0.5

35 selected_items = [i for i,
selected in enumerate(
final_selection) if selected]

36 max_value = torch.sum(
final_selection * values).
item()

37 current_solution = Solution(
max_value, selected_items,
final_selection,time.time() -
start_time)

38 #best_solution = best_solutions
[0]

39 if len(best_solutions) < n_best:
40 best_solutions.append(

current_solution)
41 best_solutions.sort(key=

lambda x: x.value,
reverse=True)

42 elif max_value > best_solutions
[-1].value:

43 best_solutions.pop()
44 best_solutions.append(

current_solution)
45 best_solutions.sort(key=

lambda x: x.value,
reverse=True)

46 # Print intermediate results
47 if (i + 1) % print_every == 0:
48 elapsed_time = time.time() -

start_time
49 best_solution = best_solutions

[0]
50 print(f"Iteration {i+1}: loss={

loss.item():.2f},
total_value={total_value.
item():.2f}, total_weight={
total_weight.item():.2f},
elapsed_time={elapsed_time
:.2f}s")

51 print(f"Best solution so far:
value={best_solution.value
}, items={best_solution.
items}")

52

53 max_value = best_solutions[0].value
54 selected_items = best_solutions[0].

items
55

56 best_solutions_diff = sorted([(s.
elapsed_time, s.value) for s in
best_solutions], key=lambda x: x
[0])

57 #best_solutions_diff = [(s.elapsed_time
, s.value) for s in best_solutions]

58

59 return max_value, selected_items,
best_solutions_diff



APPENDIX I
EXAMPLE CODE FOR PARALLEL RANDOM
INITIALIZATION SIMULATION PROGRAM

Listing 4. Example Code for Parallel Random Initialization Simulation Program
1 import torch
2 import torch.nn as nn
3 import torch.optim as optim
4 from torch.utils.data import DataLoader
5 from torchvision import datasets,

transforms
6 import numpy as np
7 import random
8 import itertools
9

10 import pyDOE2
11 from scipy.optimize import minimize
12 from skopt import gp_minimize
13

14 import torchvision
15 import torchvision.transforms as transforms
16 import torch.nn.functional as F
17 import matplotlib.pyplot as plt
18 import os
19 from tqdm import tqdm
20 import datetime
21 #from datetime import datetime
22 import csv
23 from datetime import datetime
24

25 results_dir = ’./results’
26 def nowTimetoString():
27 now=datetime.now()
28 return now.strftime("%m-%d-%Y_%H-%M-%S"

)
29

30 class SimpleNN(nn.Module):
31 def __init__(self, to_demo=True):
32 super(SimpleNN, self).__init__()
33 if to_demo:
34 self.conv1 = nn.Conv2d(3, 16,

3, padding=1)
35 self.conv2 = nn.Conv2d(16, 32,

3, padding=1)
36 self.fc1 = nn.Linear(32 * 8 *

8, 64)
37 self.fc2 = nn.Linear(64, 10)
38 else:
39 self.conv1 = nn.Conv2d(3, 16,

3, padding=1)
40 self.conv2 = nn.Conv2d(16, 32,

3, padding=1)
41 self.fc1 = nn.Linear(32 * 8 *

8, 64)
42 self.fc2 = nn.Linear(64, 10)
43

44 self.relu1 = nn.ReLU(inplace=True)
45 self.pool = nn.MaxPool2d(2, 2)
46 self.relu2 = nn.ReLU(inplace=True)
47 self.relu3 = nn.ReLU(inplace=True)
48

49 def forward(self, x):
50 x = self.conv1(x)
51 x = self.relu1(x)
52 x = self.pool(x)
53 x = self.conv2(x)

54 x = self.relu2(x)
55 x = self.pool(x)
56 x = x.view(x.size(0), -1)
57 x = self.fc1(x)
58 x = self.relu3(x)
59 x = self.fc2(x)
60 return x
61

62 def init_weights(model, init_values):
63 for i, param in enumerate(model.

parameters()):
64 param.data.copy_(torch.from_numpy(

init_values[i]))
65

66 #param.data.copy_(torch.tensor(
init_values[i]))

67

68

69 # SimpleNN and init_weights remain the same
as before

70 def simulate_parallel_loss(model,
init_values, train_loader, device,
num_epochs=10):

71 model.to(device)
72 init_weights(model, init_values)
73 criterion = nn.CrossEntropyLoss()
74 optimizer = optim.SGD(model.parameters

(), lr=0.01, momentum=0.9)
75

76 loss_curve = []
77 for epoch in tqdm(range(num_epochs),

desc="Training"):#range(num_epochs)
:

78 running_loss = 0.0
79 for data, target in train_loader:
80 data, target = data.to(device),

target.to(device)
81 optimizer.zero_grad()
82 output = model(data)
83 loss = criterion(output, target

)
84 loss.backward()
85 optimizer.step()
86 running_loss += loss.item()
87

88 loss_curve.append(running_loss /
len(train_loader))

89 return loss_curve
90

91

92 #originally work version
93 def run_simulation(num_workers,init_values,

train_loader, device, num_epochs=10,
to_demo=True):#original 2nd argument:
sampling_method

94 losses = []
95 for worker_id in range(num_workers):
96 #init_values = sampling_method()
97 loss_curve = simulate_parallel_loss

(SimpleNN(to_demo=to_demo),
init_values, train_loader,
device, num_epochs)

98 losses.append(loss_curve)
99 return losses

100

101

102



103 def to_csv(data,num_epochs):
104 if not os.path.exists(results_dir):
105 os.makedirs(results_dir)
106 nowTimeString=nowTimetoString()
107

108 with open(os.path.join(results_dir,
nowTimeString+’table1.csv’), ’w’,
newline=’’) as file:

109 writer = csv.writer(file)
110 header = [’Method’]#, ’Iteration

1’, ’Iteration 2’, ’Iteration
3’, ’Iteration 4’, ’Iteration
5’, ’Iteration 6’, ’Iteration
7’, ’Iteration 8’, ’Iteration
9’, ’Iteration 10’, ’Iteration
11’, ’Iteration 12’, ’Iteration
13’, ’Iteration 14’, ’

Iteration 15’, ’Iteration 16’,
’Iteration 17’, ’Iteration 18’,
’Iteration 19’, ’Iteration

20’, ’Iteration 21’, ’Iteration
22’, ’Iteration 23’, ’

Iteration 24’, ’Iteration 25’,
’Iteration 26’, ’Iteration 27’,
’Iteration 28’, ’Iteration

29’, ’Iteration 30’]
111 for i in range(num_epochs):
112 header.append("Epoch"+str(i+1))
113

114 writer.writerow(header)
115

116 for method in data:
117 for i in range(len(data[method

])):
118 row = [method+" worker"+str

(i+1)]
119 row += [str(num) for num in

data[method][i]]
120 writer.writerow(row)
121

122

123 def main(to_demo=True,NUM_WORKERS_=20,
EPOCHS=100,DEMO_EPOCHS=50):

124 # Prepare the dataset
125 device = torch.device(’cuda’ if torch.

cuda.is_available() else ’cpu’)
126 #device = torch.device(’cuda:0’ if

torch.cuda.is_available() else ’cpu
’)

127 #transform = transforms.Compose([
transforms.ToTensor(), transforms.
Normalize((0.5, 0.5, 0.5), (0.5,
0.5, 0.5))])

128 transform = transforms.Compose([
129 transforms.RandomHorizontalFlip(),
130 transforms.RandomCrop(32, padding

=4),
131 transforms.ToTensor(),
132 transforms.Normalize((0.5, 0.5,

0.5), (0.5, 0.5, 0.5))
133 ])
134 train_dataset = torchvision.datasets.

CIFAR10(root=’./data’, train=True,
download=True, transform=transform)

135 if to_demo:
136 train_dataset, _ = torch.utils.data

.random_split(train_dataset,

[1000, len(train_dataset) -
1000])

137 train_loader = DataLoader(train_dataset
, batch_size=32, shuffle=True,
num_workers=2)#, num_workers=2

138 #NUM_WORKERS_= 4
139 num_workers = NUM_WORKERS_
140

141 num_epochs = DEMO_EPOCHS if to_demo
else EPOCHS #30

142 # Define sampling methods
143 def single_random_initialization():
144 model = SimpleNN()
145 init_values = [p.data.clone().numpy

() for p in model.parameters()]
# originally no .numpy()

146 return init_values
147

148

149 def uniform_sampling():
150 #return [np.random.uniform(0, 1, p.

numel()).reshape(p.shape) for p
in SimpleNN().parameters()]

151 model = SimpleNN()
152 init_values = [p.data.clone().numpy

() for p in model.parameters()]
# originally no .numpy()

153 return init_values
154

155 def uniform_init():
156 model = SimpleNN()
157 init_values = [p.data.clone().numpy

() for p in model.parameters()]
# originally no .numpy()

158 return nn.init.uniform_(init_values
)

159

160 def latin_hypercube_sampling():
161 n_params = sum(p.numel() for p in

SimpleNN().parameters())
162 lhs_samples = pyDOE2.lhs(n_params,

samples=num_workers, criterion=
’maximin’)

163 lhs_samples = lhs_samples * 2 - 1
# scale to [-1, 1]

164

165 init_values_list = []
166 for sample in lhs_samples:
167 init_values = []
168 start_index = 0
169 for p in SimpleNN().parameters

():
170 end_index = start_index + p

.numel()
171 param_sample = sample[

start_index:end_index].
reshape(p.shape)

172 init_values.append(torch.
from_numpy(param_sample
))

173 start_index = end_index
174 init_values_list.append(

init_values)
175

176 return init_values_list
177

178



179

180 def adaptive_sampling():
181 def loss_function(params):
182 init_values = [param.reshape(p.

shape) for param, p in zip(
params, SimpleNN().
parameters())]

183 return simulate_parallel_loss(
SimpleNN(), init_values,
train_loader, device)

184

185 bounds = [(-1, 1)] * sum(p.numel()
for p in SimpleNN().parameters
())

186 result = minimize(loss_function, x0
=np.zeros(len(bounds)), bounds=
bounds, method=’L-BFGS-B’)

187 best_params = result.x
188

189 return [best_params.reshape(p.shape
) for p in SimpleNN().
parameters()]

190

191 def bayesian_optimization():
192 def loss_function(params):
193 init_values = [param.reshape(p.

shape) for param, p in zip(
params, SimpleNN().
parameters())]

194 return simulate_parallel_loss(
SimpleNN(), init_values,
train_loader, device)

195

196 bounds = [(-1, 1)] * sum(p.numel()
for p in SimpleNN().parameters
())

197 result = gp_minimize(loss_function,
bounds, n_calls=num_workers,

n_random_starts=0, random_state
=42)

198 best_params = result.x
199

200 return [best_params.reshape(p.shape
) for p in SimpleNN().
parameters()]

201

202 methods = [
203 (’Single Random Initialization’,

single_random_initialization),
204 (’Uniform Sampling’,

uniform_sampling),
205 #(’Adaptive Sampling’,

adaptive_sampling),
206 #(’Bayesian Optimization’,

bayesian_optimization),
207 #(’LHS’, latin_hypercube_sampling),
208 ]
209

210 losses = {}
211 for method_name, method in methods:
212 print(f"Running {method_name}...")
213 if method_name==’Single Random

Initialization’:
214 num_workers=1
215 else:
216 num_workers=NUM_WORKERS_
217 init_values = method()

218 loss_curve = run_simulation(
num_workers, init_values,
train_loader, device,
num_epochs,to_demo)

219 losses[method_name] = loss_curve
220

221 print(losses)
222 to_csv(losses,num_epochs)
223 # Plot loss curves
224 plt.figure(figsize=(12, 6))
225 for method_name, loss_curve in losses.

items():
226 plt.plot(loss_curve, label=

method_name)
227

228 plt.xlabel(’Epoch’)
229 plt.ylabel(’Loss’)
230 plt.title(’Loss Curves for Different

Initialization Methods’)
231 plt.legend()
232 plt.grid()
233 plt.show()
234

235 results_dir = ’./results’
236 if not os.path.exists(results_dir):
237 os.makedirs(results_dir)
238

239 now=datetime.now()
240 plt.savefig(os.path.join(results_dir,

now.strftime("%m-%d-%Y_%H-%M-%S")+
’loss_curves.png’))

241 plt.show()
242

243

244 if __name__ == "__main__":
245 main(to_demo=True,NUM_WORKERS_=40,

EPOCHS=50,DEMO_EPOCHS=300)
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